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PHP2514: Applied Generalized Linear Models

Homework 3

Antonella Basso

Question 1:

Use the data from the British Doctors’ study (Table 9.1 on page 201 in your textbook) to answer
the following questions:

a) Fit Model 9.9 (page 202).
b) Reproduce Table 9.2 (page 203).
c) Based on this model, what is the effect of smoking on deaths from coronary heart disease?

d) Calculate the expected number of deaths in each age and smoking status category based on
this model and plot them against the observed frequencies.

e) Assess the overall fit of the model checking for outliers, influential points, and form of the
model covariates.

f) Fit another model that includes age as a categorical covariate. Use as the reference group
"Ages: 35 to 44" and include in the model the interaction of age with smoking status.

e i. Perform a hypothesis test to check whether the interaction between age and smoking is
significant.

e ii. Compare model in part (a) with model in part (f). Which one best fits the data? Explain.
Use both quantitative and visual approaches to justify your answer.

#DATA WRANGLING

#installing packages

suppressMessages (install.packages("tidyverse"))
suppressMessages (library(tidyverse))

suppressMessages (library(nnet)) #multinomial regression
suppressMessages (install.packages("VGAM")) #ordinal regression

suppressMessages (library (VGAM) )

Data:

Table 9.1: Deaths from coronary heart disease after 10 years among British male doctors
categorized by age and smoking status in 1951.

Smokers:
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Age Group Deaths Person-Years

35-44 32 52407
45-54 104 43248
55-64 206 28612
65-74 186 12663
75-84 102 5317

Non-Smokers:

Age Group Deaths Person-Years

35-44 2 18790
45-54 12 10673
55-64 28 5710
65-74 28 2585
75-84 31 1462

#Data: Table 9.1 (on page 201)

british docs <- data.frame(age group=rep(c(l, 2, 3, 4, 5), 2), #nominal age vari
age_group2=rep(c(l, 2, 3, 4, 5)%2, 2), #square of age
age=rep(c("35-44", "45-54", "55-64", "65-74", "75-84"
smoking status=as.vector(cbind(rep(c("smokers"), 5),
deaths=c(32, 104, 206, 186, 102, 2, 12, 28, 28, 31),
person_years=c (52407, 43248, 28612, 12663, 5317, 1879

#Visualizing Death Counts and Death Rates

#counts

ggplot(british docs, aes(x=age, y=deaths, color=smoking status)) +
geom point(size=3) +
scale color manual(values=c("blue", "red")) +
labs (x="Age Group", y="Deaths", title="Death Counts")

#rates

ggplot (british docs, aes(x=age, y=(deaths/person years)*10000, color=smoking sta
geom point(size=3) +
scale color manual(values=c('"blue", "red")) +
labs(x="Age Group", y="Deaths per 10,000 person-years", title="Death Rates")
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a) Model (9.9):

The outcome of interest, $Y_i$, indicates the number of deaths from coronary heart disease
among male British doctors.
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For $i =\{1, 2, ..., 10\}$, let $i$ be the $i$th row inthe british_docs data frame above,
denoting the $i$th subgroup defined by age group and smoking status. Then, the Poisson
regression model to model the differential death rate (for smokers and non-smokers) with
respect to age is as follows:

$$ log(\text{deaths}_i) = log(\text{person_years}_i) + \beta_0 + \beta_1\text{smoking_status}_i
+ \beta_2\text{age_group}_i + \beta_3\text{age_group}2_i +
\beta_4\text{age_group*smoking_status}_i $$

Where the non-smoker group is the reference group (denoted as 0), and $\text{age_group}2_i$
is the square of $\text{age_group}_i$ and is used to account for the non-linearity of the rate of
increase.

pr_glm <- glm(deaths ~ smoking status + age group + age group2 + age_group*smoki
family=poisson, data=british docs)
#summary (pr_glm)

b) Table (9.2)

#Table 9.2

#confidence intervals
coeff ci <- as.data.frame(round(exp(confint(pr glm)), 2))
lower <- coeff ci[, 1]
upper <- coeff ci[, 2]

coeff ci2 <- c()

for (i in 1:5){
comb_ci <- paste(lower[i], upper[i], sep=", ")
coeff ci2 = c(coeff ci2, comb_ci)

}

#table
table92 <- as.data.frame(round(summary(pr_glm)$coefficients, 5)) %>
mutate(rate ratio=round(exp(as.vector(coefficients(

% #coefficie
pr_glm))), 5)

names (table92) <- c("Coefficient", "Standard Error", "Wald Statistic", "p-value"

table92 <- as.data.frame(t(table92)) %>% select(!(starts_with("(Intercept)"))) #
table92

Waiting for profiling to be done...

A data.frame: 6 x 4

smoking_statussmokers age_group age_group2 smoking_statussmokers:age_group

<chr> <chr> <chr> <chr>

Coefficient 1.44097  2.37648 -0.19768 -0.30755

Standard 0.37220 0.20795 0.02737 0.09704
Error

Wald 387151 1142820  -7.22306 -3.16925
Statistic
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smoking_statussmokers

p-value
Rate Ratio
95%

Confidence
Interval

#Table 9.3

fitted values = fitted(pr_glm)
pearson_residuals <- residuals(pr_glm, type
deviance residuals <- residuals(pr_glm, type

<chr>
0.000M

4.22480

2.09, 9.01

PHP2514_Basso_HW3_2021

age_group age_group2

<chr>
0.00000

10.76692

7.23,16.34

chisg <- sum(pearson_ residuals”2)
residual_deviance <- deviance(pr_glm) #sum(deviance residuals”2)

<chr>
0.00000

0.82064

0.78, 0.87

"pearson")
"deviance")

smoking_statussmokers:age_group

<chr>

0.00153

0.73525

0.61, 0.89

#data.frame(fitted values, pearson residuals, deviance residuals)
cbind(british docs[, c(3, 4, 5)], fitted values, pearson residuals, deviance_ res

#chisqg

#residual deviance

age smoking_status

<chr>
1 35-44
45-54
55-64
65-74

75-84

o o b W N

35-44

7 45-54

00

55-64

9 65-74

10 75-84

c) Poisson Regression Model Interpretation

<chr>
smokers
smokers
smokers
smokers
smokers
non-smokers
non-smokers
non-smokers
non-smokers

non-smokers

A data.frame: 10 x 6

deaths
<dbl>
32
104
206
186
102

2

12

28

28

31

fitted_values pearson_residuals deviance_residuals

<dbl>
29.584734
106.811960
208.198646
182.827893
102.576767
3.414801
11.541629
24.743377
30.229155

31.071038

<dbl>
0.44404929
-0.27208163
-0.15237591
0.23459923
-0.05694769
-0.76561908
0.13492231
0.65469354
-0.40544060

-0.01274427

<dbl>
0.43820403
-0.27328873
-0.15264528
0.23392570
-0.05700118
-0.83049031
0.13404370
0.64106682
-0.41058325

-0.01274913

Based on the Poisson regression model for this data ( pr_glm ), which produced statistically

significant estimates of coefficients, the risk of death from coronary heart disease is increased

by a factor of 4 for smokers (with non-smokers as the reference group). That is, the

exponentiated beta coefficient for smoking status, which yields a corresponding death rate

ratio, tells us that the risk of a coronary heart disease-related death is approximately 4 times
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higher for those who smoke than for those who do not, irrespective of age. This risk is then
presumably exacerbated with increase in age (given the interaction term).

d) Fitted vs. Observed Number of Deaths

Plotting the expected number of deaths in each age and smoking status category based on the
Pisson regression model ( pr_glm ) against their corresponding observed frequencies.

#Fitted vs. Observed Deaths Plot

#data frame
deaths <- cbind(british docs[, c(3, 4, 5)], round(fitted values, 2))
names (deaths) <- c("age", "smoking status", "observed", "fitted")

#plot of fitted and observed against age group

ggplot(deaths) +
geom_point(aes(x=age, y=observed, color=smoking status), shape=1l, size=4) +
geom point(aes(x=age, y=fitted, color=smoking status), shape=5, size=4) +
scale color manual(values=c("blue", "red")) +
labs(x="Age Group", y="Deaths", title="Death Counts")

#plot of fitted against observed

ggplot(deaths, aes(x=observed, y=fitted, color=smoking status)) +
geom point(size=3) +
scale color manual(values=c("blue", "red")) +
labs (x="Observed", y="Fitted", title="Death Counts")

Death Counts
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e) Checking Model Fit & Model Assumptions:

Model Fit:

e GoF/Deviance: Given the $\chi”~2$-statistic of $\approx 1.55$ and corresponding p-value
of $\approx 0.91 > 0.05%, we may not reject the null hypothesis that assumes equality
between our observed and fitted values. That is, under this assumption, we can be roughly
$90\%$ certain that there is no difference between the model's predictions and the
observed outcomes. Thus, we conclude that this model fits the data well.

Model Assumptions:

e Linearity (functional form of model covariates): As residuals display no significant trend
with respect to observed outcomes, (first plot below), we may assume that there is a linear
relationship between covariates in the model and death rate.

¢ Normality: Since the Normal Q-Q Plot (second plot below) displays values roughly along
the diagonal line (especially near the center), we deduce that residuals are approximately
normally distributed.

e Outliers: As no standardized residuals exceed observations by 3 in absolute value (fourth
plot below), there are no outliers (observations with a response far away from the
regression plane) in the data.

¢ Influential Points: Given that the Cook's distance is less than 1 (fifth plot below), it follows
that there are no influential/high-leverage points in the data (i.e. observations with a
relatively large effect on estimates of model coefficients).
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#MODEL FIT

#GoF: Chi Square Test

#p-value for chisq statistic with 5 degrees of freedom is very high

#we fail to reject the null hypothesis and assume that there is little differenc
#thus, the model is a good fit for the data

1 - pchisqg(chisq, df.residual(pr_glm)) #same as pchisq(g=chisq, df=5, lower.tail

0.907199008588632

#MODEL ASSUMPTIONS :

#plots to assess linearity, normality, outliers
par (mfrow=c(2,2))

plot(pr_glm)
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#cook's distance for influential points
plot(cooks.distance(pr_glm), ylim=c(0,1), main

"Cook's Distance for Influentia

abline(h = 1, 1lty = 2) #cutoff line at 1 (degress of freedom/number of observati
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Cook's Distance for Influential Points
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f) Model for Categorical Covariates

Fitting another model that includes age as a categorical covariate (with age 35-44 as the
reference group) and the interaction of age with smoking status. Is the interaction between age
and smoking significant?

e Referencing the ANOVA table below (between the models with and without the interaction
term), it is evident that, given the corresponding p-value of $\approx 0.016 < 0.05$, the
interaction term is statistically significant. This implies furthermore, that there exists a
statistically significant association (although not very strong) between the two covariates.
And, given the form of the model, this association is homogeneous. That is, all covariates in
the model (in this case, smoking status and age group) are not independent. Also observing
the coefficient estimate p-values for interactions above (from the summary table), we see
that, although this relationship is not extremely significant, it is significant enough to infer a
dependency. Specifically, since the most significant interaction occurs between the
smoking and maximum age group, we may conjecture moreover that whether or not a
person smokes is somewhat dependent on whether or not they belong to an older age
group (and vise versa). Which model best fits the data?

e Not only is the AIC value for the model which regards age as a continuous explanatory
variable (66.703) smaller than that for the model which treats it as a categorical explanatory
variable (75.068), but when comparing their corresponding summary plots and looking at
their densities (below), we see that the latter model (from part (f)) produces residuals that
are far more spread out and less normally distributed than the model from part (a). Taking
these visuals in tandem with the values produced (including the sums of their squared
residuals), it is clear that the model which takes age as a continuous covariate fits the data
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best. This could, in part, be due to the fact that the former model includes a squared term
for age in addition to the terms in the latter model, as well as the fact that it accounts for
the ordinal nature of this predictor, whereas the new model treats it merely as nominal (and
hence, gives us less information about the data). However, we are unable to make definitive
claims about the reason behind this difference in overall fits. What we can say with
certainty is that the model from part (a) approximates observed values and hence fits the
data far better than this new model from part (f).

#Models with Age as Categorical (age 35-44 = reference group)

#Log-linear model without offset for all categorical covariates

#not a significant difference from log-linear model (more of a terminology matte

11 glm <- glm(deaths ~ smoking status + age + age*smoking status,
family=poisson, data=british_ docs)

#Poisson regression with offset (even with all categorical covariates), since n

#"saturated model" assumes homogeneous assosiation

pr _glm2 <- glm(deaths ~ smoking status + age + age*smoking status + offset(log(p
family=poisson, data=british docs) #(only interraction term needea

#summary (pr._glm2)

#Poisson regression without interaction term (only the main effects)

#assumes mutual independence of covariates

pr_glm3 <- glm(deaths ~ smoking status + age + offset(log(person_years)),
family=poisson, data=british docs)

#summary (pr_glm3)

#Is there any association between smoking status and age group (categorical cova
#with a p-value of 0.016, there is a statistically significant assosiation
#thus, smoking status and age group are NOT independent and the interaction ternm

anova(pr_glm3, pr glm2, test="LRT")

Aanova: 2 x5

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
<dbl> <dbl> <dbl> <dbl> <dbl>

1 4  1.213237e+01 NA NA NA
2 0 2.664535e-15 4 1213237 0.01639363

#Model Comparisons:

#residual deviances - 1.64 vs. 12.13
anova(pr_glm, pr glm3, test="LRT")

#pearson chi-square statistics - 1.56 vs. 11.16

deaths2 <- deaths %>% mutate(fitted2=fitted(pr glm3),
pearson_residuals=residuals(pr_glm, type = "pearson
pearson_residuals2=residuals(pr_glm3, type = "pears

#deaths2
chisg <- sum(deaths2$pearson_residuals”2)
chisg2 <- sum(deaths2$pearson_residuals2”2)
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#chisqg
#chisq2

A anova: 2 x5

Resid. Df Resid. Dev

<dbl> <dbl> <dbl>
1 5 1.63537 NA
2 4 12.13237 1

#Second Model - Assumptions:
#plots to assess linearity,

par (mfrow=c(2,2))
plot(pr_glm3)
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Df Deviance Pr(>Chi)

<dbl> <dbl>

NA NA
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#cook's distance for influential points
plot(cooks.distance(pr glm3), ylim=c(0,1), main = "Cook's Distance for Influenti
abline(h = 1, 1ty = 2) #cutoff line at 1 (degress of freedom/number of observati
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Cook's Distance for Influential Points
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#Residual Densities

#model from part (a) in green
#model from part (f) in blue

par (mfrow=c(2,2))

plot(density(resid(pr_glm, type="response")), col="darkgreen", main="Residual De
lines(density(resid(pr_glm3, type="response")), col="blue")

plot(density(resid(pr_glm, type="pearson")), col="darkgreen", main="Pearson Resi
lines(density(resid(pr_glm3, type="pearson")), col="blue")

plot(density(resid(pr_glm, type="deviance")), col="darkgreen", main="Deviance Re
lines(density(resid(pr_glm3, type="deviance")), col="blue")
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#Observed vs. Fitted Densities

#observed in black
#fitted in red

par (mfrow=c(1,2))

plot(density(british docsS$deaths), main='Model 1')
lines(density(predict(pr_glm, type="response")), col='red')

plot(density(british docs$deaths), main='Model 2')
lines(density(predict(pr_glm3, type='response')), col='red")
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Question 2;

The dataset "vrt.csv" contains data collected from a hypothetical randomized control trial for
evaluating an influenza vaccine. Patients were randomly allocated to two groups, one of which
was given the new vaccine and the other a saline placebo. The number of patients with immune
response after vaccination was recorded and the amount of immune response was classified as
"small", "moderate", and "large".

a) Conduct a comprehensive Exploratory Data Analysis (EDA) to inspect, understand and
describe the information collected in this dataset. Use appropriate summary statistics and plots
to present your results from the EDA.

b) Suppose that you want to evaluate the association between immune response, vaccination
status, and sex. Use the appropriate GLM to analyze the data and answer the following:

e i. Explain what GLM would you use to answer this research question and why.

e ii. Apply a model selection procedure (forward, backward or stepwise) to find the model
that best fits the data. In this procedure also consider inclusion of interaction terms in the
model.

e ji. State the form of the model that best fits the data. What does this model imply about the
association among vaccine, immunity level, and sex?

c) You are also interested in the effect of vaccine type on the immunity level. Use an appropriate
GLM to analyze the data and answer the following:

e i. What GLM would you use to answer this question?

https://php2560 jupyter.brown.edu/user/antonella_basso/lab/workspaces/auto-c/tree/AGLM/HW3/PHP2514_Basso_ HW3_2021.ipynb
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e ii. Using the type of GLM you determined, implement a model selection procedure to find
the model that best fits the data. In this procedure also consider inclusion of interaction
terms in the model. Use as reference groups the "placebo", "female", and "small" immunity
level.

e ii. State the form of the model that best fits the data. What is the effect of vaccines on the
immunity level?

#DATA WRANGLING

#importing "vrt" data
vrt <- read.csv("/home/jovyan/AGLM/HW3/vrt.csv")

#renaming values

names (vrt)[names(vrt) == "antibody.level"] <- "antibody level"
vrt$vaccine[vrt$vaccine == "Placebo"] <- "P"
vrt$vaccine[vrt$vaccine == "Yes"] <- "V"

"Male" ] <_ "Mll
"Female"] <- "F"

vrt$sex[vrt$sex =
vrt$sex[vrt$sex =

vrt$antibody level[vrt$antibody level
vrt$antibody level[vrt$antibody level
vrt$antibody level[vrt$antibody level

n Smallll ] <_ llsll
"moderate"] <- "M"
Illargell] <_ IILII

#vrt

a) Exploratory Data Analysis (EDA)

The variables in this dataset are as follows:

e Qutcome ($Y$: number of subjects in each antibody level group (S, M, L))
e Covariate ($X_1$: vaccine type (placebo, vaccine), $X_2$: sex (M, F))

The primary outcome of interest is a categorical random variable with ordinal scale, while the
predictor variables are categorical and binary with nominal scale.

This EDA consists of:

e Descriptive Statistics
e Boxplots

Descriptive Statistics:

e Count of subjects in the study.

e Count of subjects in each antibody level group.

e Summary of subject count in each antibody level group (minimum value, 1st quartile,
median, mean, 3rd quartile, maximum value) for the whole data, by vaccine type, and sex.

#total number of subjects in study
#sum(vrtsfreq)

#subject count in each antibody level group

https://php2560 jupyter.brown.edu/user/antonella_basso/lab/workspaces/auto-c/tree/AGLM/HW3/PHP2514_Basso_ HW3_2021.ipynb
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#by(vrtsfreq, vrtsantibody level, sum, na.rm=TRUE)

#summary of subject count in each antibody level group
#by(vrtsfreq, vrtsantibody level, summary, na.rm=TRUE)

#SD and of subject count in each antibody level group

#sd(vrt[vrtsantibody level == "S", ]sfreq)
#sd(vrt[vrtsantibody level == "M",]Sfreq)
#sd(vrt[vrtsantibody level == "L",]Sfreq)

#summary of subject count in each antibody level group and vaccine group

#summary (vrt[vrtSantibody level == "S" & vrtSvaccine == "V",]Sfreq, na.rm=TRUE)
#summary (vrt[vrtSantibody level == "M" & vrtSvaccine == "V",]Sfreq, na.rm=TRUE)
#summary (vrt[vrtSantibody level == "L" & vrtSvaccine == "V",]Sfreq, na.rm=TRUE)
#summary (vrt[vrtSantibody level == "S" & vrtSvaccine == "P",]Sfreq, na.rm=TRUE)
#summary (vrt[vrtSantibody level == "M" & vrtSvaccine == "P",]Sfreq, na.rm=TRUE)
#summary (vrt[vrtSantibody level == "L" & vrtSvaccine == "P",]Sfreq, na.rm=TRUE)

#summary of subject count in each antibody level
#summary (vrt[vrtSantibody level == "S" & vrtSsex ==

group and sex

"M", ]Sfreq, na.rm=TRUE)

#summary (vrt[vrtSantibody level == "M" & vrtSsex == "M",]Sfreq, na.rm=TRUE)
#summary (vrt[vrtSantibody level == "L" & vrtSsex == "M",]Sfreq, na.rm=TRUE)
#summary (vrt[vrtSantibody level == "S" & vrtSsex == "F",]Sfreq, na.rm=TRUE)
#summary (vrt[vrtSantibody level == "M" & vrtSsex == "F",]Sfreq, na.rm=TRUE)
#summary (vrt[vrtSantibody level == "L" & vrtSsex == "F",]Sfreq, na.rm=TRUE)

Boxplots:

e The first boxplot shows a side by side comparison of the mean and spread of subject count
for each immunity/antibody level group.

e The second boxplot shows side by side comparisons of the mean and spread of subject
count for each immunity/antibody level group and vaccine type.

e The third boxplot shows side by side comparisons of the mean and spread of subject count
for each immunity/antibody level group and sex.

#Boxplots

#spread of subject count by antibody level

ggplot(vrt, aes(x=antibody level, y=freq, color=antibody level)) +
geom_boxplot() +
geom_jitter(shape=16, position=position_jitter(0)) +
labs(x = "Antibody Level", y = "Count", title = "Subject Count by Antibody L

#spread of subject count by antibody level and vaccine type
ggplot(vrt, aes(x=antibody level, y=freq, color=vaccine)) +
geom_boxplot(position=position dodge(l)) +

scale color manual(values=c('"red", "blue")) +
labs(x = "Antibody Level", y = "Count", title = "Subject Count by Antibody L
#spread of subject count by antibody level and sex
ggplot(vrt, aes(x=antibody level, y=freq, color=sex)) +
geom_boxplot(position=position dodge(l)) +
labs(x = "Antibody Level", y = "Count", title = "Subject Count by Antibody L
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b) GLM to Evaluate Variable Association

Research Question: Is there any association between immune response, vaccination status,
and sex?

GLM: Log-Linear Model for Contingency Tables

e To answer this research question, it is best to employ a Log-Linear model to the data. Given
the fact that we are solely interested in testing for association between variables, and not
the effect of a subset of them on another, this type of model is preferable to a multinomial
regression model.

Best Model: Joint Independence (Although, NO ASSUMPTION HOLDS)

While it is evident, based on the model selection procedure and model comparisons (using LR
tests and AIC scores), that neither model fits the data well enough to assume any particular
association between variables, the model which best describes the data (purely based on
parsimony and closeness to the saturated model in fit) is that of the following form:

Let $X"A_{:i=1, 2, 3}$ be the antibody level random variable of three groups with $i=1, 2, 3$
representing the "small", "moderate", and "large" groups, respectively: $X"*B_{:j=1, 2}$ be the
vaccine type random variable of two groups with $j=1, 2$ representing the "placebo" and
"vaccine" groups, respectively; and $X*C_{:k=1, 2}$ be the sex random variable with $k=1, 2$
representing "female" and "male", respectively. Moreover, let $i=3$, $j=2$, and $k=1$ be the
reference groups for antibody level, vaccine type, and sex. Then,

$$ log(E[Y_{ij}]) = \beta_0 + \beta™A_i + \beta”B_j + \beta”C_k + \beta™{AB}_{ij} $$

https://php2560 jupyter.brown.edu/user/antonella_basso/lab/workspaces/auto-c/tree/AGLM/HW3/PHP2514_Basso_ HW3_2021.ipynb 18/34
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This model not only implies that sex is jointly independent from immunity/antibody level and
vaccine type, but that immunity/antibody level and vaccine are strongly associated.

#LOG-LINEAR MODEL
#Model Selection: Backward Elimination

#saturated model

11 glml <- glm(freq ~ antibody level + vaccine + sex + #main effects
antibody level*vaccine + antibody level*sex + vaccine*sex + #two-
antibody level*vaccine*sex, #three-way interaction
family=poisson, data=vrt)

#model with two-way interaction terms <- assumes homogeneous assosiation

11 glm2 <- glm(freq ~ antibody_ level + vaccine + sex + #main effects
antibody level*vaccine + antibody level*sex + vaccine*sex, #two-u
family=poisson, data=vrt)

#model without least significant two-way interaction term <- assumes conditional
11 glm3 <- glm(freq ~ antibody level + vaccine + sex + #main effects
antibody level*vaccine + vaccine*sex, #two-way interactions
family=poisson, data=vrt)

#model with 1 two-way interaction term <- assumes joint independence (best model
#sex 1s jointly independent of vaccine and antibody level
#second smallest AIC score aside from 11 glm5 and saturated model
11 glm4 <- glm(freq ~ antibody level + vaccine + sex + #main effects
antibody level*vaccine, #two-way interaction
family=poisson, data=vrt)

#model without least significant term (sex)

#best model (if we were not only focused on association between all three variak
#smallest AIC score aside from saturated model

11 glm5 <- glm(freq ~ antibody level + vaccine + antibody level*vaccine, family=

#additive model (main effects) <- assumes mutual independence
11 glmé <- glm(freq ~ antibody level + vaccine + sex, family=poisson, data=vrt)

#null model
11 glm0 <- glm(freq ~ 1, family=poisson, data=vrt)

#summary (11l glml)
#summary (1l glm2)
#summary (1l glm3)
#summary (11l glm4)
#summary (1l glm5)
#summary (11l glmé6)
#summary (11l gim0)

#LRT: comparing models

#additive model better than null model
#anova(ll glm0, 11 glmé6, test="LRT")

#joint independence model better than additive model
#anova(ll glm6, 11 glm4, test="LRT")

#joint independence model equal to conditional independence model
#anova(ll glm4, 11 glm3, test="LRT")

https://php2560 jupyter.brown.edu/user/antonella_basso/lab/workspaces/auto-c/tree/AGLM/HW3/PHP2514_Basso_ HW3_2021.ipynb 19/34
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#joint independence model equal to homogeneous association model
#anova(ll glm4, 11 glm2, test="LRT")

#conditional independence model equal to homogeneous association model
#anova(ll glm3, 11 glm2, test="LRT")

#saturated model better than joint independence model

#saturated model much better than conditional independence model
#saturated model significantly better than homogeneous association model
#anova(ll glm4, 11 glml, test="LRT")

#anova(ll glm3, 11 glml, test="LRT")

#anova(ll glm2, 11 glml, test="LRT")

c) GLM to Evaluate Effects

Research Question: Does vaccine type have an effect on immunity/antibody level?
GLM: Ordinal Regression Models

e To answer this research question, it is best to employ an ordinal regression model given the
nature of our response variable. Specifically, after determining the optimal cumulative logit
models with and without the proportional odds assumption and comparing their residual
deviances as well as log-likelihood values (since they have the same number of predictors
and are non-nested), we see that the proportional odds assumption may not hold, and so,

the more general/flexible cumulative logit model may provide a slightly better fit to the data.

Best Model: Cumulative Logit

Based on the model selection procedure and model comparisons, it is evident that the model
which best fits the data is that of the following form:

For immunity/antibody level groups "small", "moderate", and "large", let $X*V$ be the vaccine
type random variable of two groups with "placebo" as the reference group (0), and let $X*S$
be the sex random variable of two groups with "female" as the reference group (0):

$$ \text{Model }1: Y = logit(P(\text{small})) = log(\frac{P (\text{small}) {P(\text{moderate or
large})}) = X\beta_1 = \beta_{01} + \beta_{11}X*V_v + \beta_{21}X*S_m + \beta_{31}X"V_v
X"S_m $$$$ = -0.7340 - 0.9625X"V_v + 0.7575X"S_m - 2.1056 X" V_v X*S_m $$$$
\text{Model }2: Y = logit(P(\text{small or moderate})) = log(\frac{P(\text{small or moderate})}
{P(\text{large})}) = X\beta_2 = \beta_{02} + \beta_{12}X*V_v + \beta_{22}X"*S_m +
\beta_{32}X*V_v X*S_m $$$$ = 0.8602 - 0.7191"V_v + 0.7634"S_m - 1.1328X*V_v X*S_m $$
Exponentiated Coefficients:

vaccineV:1 sexM:1 vaccineV:sexM:1
0.3819444 2.1329365 0.1217759
vaccineV:2 sexM:2 vaccineV:sexM:2
0.4871795 2.1456044 0.3221434
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Given the exponentiated beta coefficients above, it follows that the odds of having a small or
moderate immunity/antibody level is approximately two times higher for males than females
irrespective of vaccine type, although getting the vaccine does reduce those odds. Moreover,
according to the model, getting the vaccine cuts the odds of having a small or moderate
immunity/antibody level in half irrespective of sex. But interestingly, adding the factor of being
male, makes the same odds one-third times smaller. Although this contradicts our previous
intuition that being male increases one's odds of being in the small or moderate immunity
groups, it may just be the case that without the introduction of a vaccine, males tend to have
(on average) lower antibody levels than females. Yet, evidently, the converse is true if we
introduce a vaccine. However, it is not clear whether this observation is purely
accidental/circumstantial. What can be said with much more certainty is that vaccine does have
a positive effect on immunity level irrespective of its less straightforward interactions with sex.
Specifically, aside from the apparent minute difference between small and moderate immunity
groups, it is evident that there exists a significant difference in odds between small and large
immunity groups.

#specifying reference groups and ordering response

#vaccine type
vrt$vaccine <- factor(vrt$vaccine, levels=c("P", "V")) %>% #changing ordered fac
relevel (vrt$vaccine, ref="P") #reference group = placebo

#sex
vrt$sex <- factor(vrt$sex, levels=c("F", "M")) %>% #changing ordered factor to c
relevel (vrt$sex, ref="F") #reference group = female

#response: antibody level
vrt$antibody level ord <- ordered(vrt$antibody level, levels=c("S","M","L"))
levels(vrt$antibody level ord) #reference group = small (always in the numerator

#PROPORTIONAL ODDS

#model with intercept 1 -> Y=log(P(small)/P(moderate+large))
#model with intercept 2 -> Y=log(P(small+moderate)/P(large))
#different intercepts, same beta coeficcients

#null model
po_glm0 <- vglm(antibody level ord ~ 1, family=cumulative(parallel=TRUE), data=v

#model with main effects
po_glml <- vglm(antibody level ord ~ vaccine + sex, family=cumulative(parallel=T

#model with interraction term -> saturated model
po_glm2 <- vglm(antibody level ord ~ vaccine + sex + vaccine*sex, family=cumulat

#po_glmo0
#po _glml
#po_glm2

#Model Selection:
#not many options (3 models to choose from)
#interaction term is statistically significant, we keep it and choose the larges
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#po_glm2 -> smallest residual deviance (~630)

#summary (po_glm2)

#lrtest(po_glm0, po glml) #po glml is a better fit than po glm0
#lrtest(po_glml, po glm2) #po glm2 is a better fit than po glml

#CUMULATIVE LOGIT

#model 1 -> Y=log(P(small)/P(moderate+large))
#model 2 -> Y=log(P(small+moderate)/P(large))
#different intercepts and beta coeficcients

#null model
cl glm0 <- vglm(antibody level ord ~ 1, family=cumulative, data=vrt, weights=fre

#model with main effects
cl glml <- vglm(antibody level ord ~ vaccine + sex, family=cumulative, data=vrt,

#model with interraction term -> saturated model
cl glm2 <- vglm(antibody level ord ~ vaccine + sex + vaccine*sex, family=cumulat

#cl glmO
#cl glml
#cl glm2

#Model Selection:

#not many options (3 models to choose from)

#interaction term is statistically significant, we keep it and choose the larges
#cl glm2 -> smallest residual deviance (~624)

#summary (cl glm2)

#lrtest(cl glm0, cl glml) #cl glml is a better fit than cl _glm0
#lrtest(cl glml, cl glm2) #cl glm2 is a better fit than cl _glml

th e/ 4pROPORTIONAL ODDS or CUMULATIVE LOGIT? (po glm2 or cl glm2)

#cl glm2 has slightly greater log-likelihood than po glm2
#comparing log-likelihood values instead of LRT:

#both models have the same number of predictors

#they are non-nested

logLik(cl_glm2)

logLik(po_glm2)

#cl glm2 has a slightly smaller residual deviance than po glm2
deviance(cl glm2) #624
deviance(po glm2) #630

#therefore, the cumulative logit model fits the data slightly better

-311.793251465997
-315.21877783709
623.586502931993
630.43755567418

Question 3:
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The dataset “tumor.csv” includes information on tumor responses of patients receiving
treatment for small-cell lung cancer by sex. There were two treatment regimes. For the
sequential treatment, the same combination of chemotherapeutic agents was administered at
each treatment cycle. For the alternating treatment, different combinations were alternated
from cycle to cycle (data from Holtbrugger and Schumacher, 1991).

The primary objective is to evaluate the relative effectiveness of the two treatments.

a) Use an appropriate type of GLM to assess the association between treatment, response, and
Sex.

e i. Perform a model selection procedure to find the model that best fits the data.
e ii. Comment on the results. Is there a strong association between these three variables?

b) Use an appropriate GLM to estimate the relative effectiveness of the two treatments
adjusting for sex.

e i.Is the unadjusted effect of treatment the same for any level of response?

e ji. Use an appropriate test to answer this question. [bonus question]

e iii. Does your conclusion from the first part of this problem change after adjusting for sex?

e vi. Based on your conclusions from the previous two parts of this problem, perform a model
selection procedure to find the model that best fits the data.

e v. Write the form and interpret the regression coefficients of the “best” model.

e vi. Assess the overall fit of the “best” model using regression diagnostics to identify
problems indicating model inadequacy.

¢ vii. What is your final conclusion about the relative efficacy of the two treatments based on
results from the “"best” model?

#DATA WRANGLING

#importing "vrt" data
tumor <- read.csv("/home/jovyan/AGLM/HW3/tumor.csv")

#renaming values

tumor$treatment[tumor$treatment == "sequential"] <- "S"
tumor$treatment[tumor$treatment == "alternating"] <- "A"
tumor$sex[tumor$sex == "male"] <- "M"

tumor$sex[tumor$sex == "female"] <- "F"
tumor$response[tumor$response == "progressive"] <- "P"
tumor$response[tumor$response == "no change"] <- "NC"
tumor$response[tumor$response == "partial remission"] <- "PR"
tumor$response[tumor$response == "complete remission"] <- "CR"

a) GLM to Evaluate Variable Association

Research Question: Is there any association between treatment, response, and sex?

GLM: Log-Linear Model for Contingency Tables
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e To answer this research question, it is best to employ a Log-Linear model to the data, given
the fact that we are solely interested in testing for association between variables, and not
relative effectiveness of treatments.

Best Model: Joint Independence

Based on the model selection procedure and model comparisons (using LR tests and AIC
scores), it is evident that the model which best fits the data is that of the following form:

Let $X~A_{:i=1, 2, 3, 4}$ be the response random variable of four groups with $i=1, 2, 3, 4$
representing the "progressive", "no change", "partial remission", and "complete remission"
groups, respectively: $X~B_{:j=1, 2}$ be the treatment random variable of two groups with $j=1,
2% representing the "sequential" and "alternating" groups, respectively; and $X"C_{:k=1, 2}$ be
the sex random variable with $k=1, 2$ representing "female" and "male", respectively.
Moreover, let $i=4$, $j=2$, and $k=1$ be the reference groups for antibody level, vaccine type,
and sex. Then,

$$ log(E[Y_{ij}]) = \beta_0 + \beta™A_i + \beta”B_j + \beta”C_k + \beta™{AB}_{ij} $$

This model not only implies that sex is jointly independent from response and treatment, but it
reflects an association between response and treatment. Given the results from the model
selection procedure however, it is possible for response and sex to also have some kind of
association (implying that treatment and sex could be conditionally independent given
response), yet this relationship did not prove to be significant at the 0.05 level (thus, forcing us
to choose the joint independence model over the others).

#LOG-LINEAR MODEL
#Model Selection: Backward Elimination

#saturated model
112 _glml <- glm(frequency ~ response + treatment + sex + #main effects

response*treatment + response*sex + treatment*sex + #two-way inte

response*treatment*sex, #three-way interaction
family=poisson, data=tumor)

#model with two-way interaction terms <- assumes homogeneous assosiation
112 glm2 <- glm(frequency ~ response + treatment + sex + #main effects

response*treatment + response*sex + treatment*sex, #two-way inter

family=poisson, data=tumor)

#model without least significant two-way interaction term <- assumes conditional

#treatment and sex are conditionally independent given response

112 glm3 <- glm(frequency ~ response + treatment + sex + #main effects
response*treatment + response*sex, #two-way interactions
family=poisson, data=tumor)

#model with 1 two-way interaction term <- assumes joint independence (best model

#sex 1s jointly independent of response and treatment

112 glm4 <- glm(frequency ~ response + treatment + sex + #main effects
response*treatment, #two-way interaction
family=poisson, data=tumor)

#additive model (main effects) <- assumes mutual independence

112 glm5 <- glm(frequency ~ response + treatment + sex, family=poisson, data=tum
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#null model
112 glm0 <- glm(frequency ~ 1, family=poisson, data=tumor)

#summary (112 glml)
#summary (112 glm2)
#summary (112 glm3)
#summary (112 glm4)
#summary (112 glm5)
#summary (112 glmO0)

#112 glm3 (95.405) and 112 glm4 (94.635) have the smallest AIC values (very clos

#based on LRT, 112 glm4 is better

#LRT: comparing models

#additive model better than null model
#anova(1ll2 glm0, 112 glm5, test="LRT")

#joint independence model better than additive model
#anova(1ll2 glm5, 112 glm4, test="LRT")

#joint independence model better than conditional independence model
#both equally good (the former is more parsimoneous)

#anova(1ll2 glm4, 112 glm3, test="LRT")

#joint independence model better than homogeneous association model
#anova(1ll2 glm4, 112 glm2, test="LRT")

#joint independence model better than saturated model
anova(ll2 glm4, 112 glml, test="LRT")

Aanova: 2 x5

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
<dbl> <dbl> <dbl> <dbl> <dbl>

1 7 7.799115e+00 NA NA NA
2 0 -8.659742e-15 7 7799115 0.3506408

b) GLM to Evaluate Relative Effectiveness

Research Question: What can be said about the relative effectiveness of the two treatments
with and without adjusting for sex?

To assess whether the effect of treatment remains the same for any level of response, it serves
us well to determine whether the data assumes proportionality of odds (satisfies the
proportional odds assumption). To do this, we compare both the cumulative logit with and
without the proportional odds assumption. In doing this, we see that both models fit the data
equally well (based on log-likelihood values and residual deviances), indicating that the
proportional odds assumption holds, and we may use it to both generate a more parsimonious
model and provide us with information about the relationship between response levels for each
treatment. Specifically, this assumption implies that the effects of both treatments are
proportional and hence, remain (approximately) constant for any level of response. This intuition
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follows from the fact that the proportional odds approach keeps the slopes (or predictor
coefficients) in the linear models for each response level the same (and hence, producing
parallel fitted lines). Thus, we conclude that the effect of treatment remains the same for any
level of response.

UNADJUSTED Effect of Treatment:

Exponentiated Treatment Coefficient:

treatmentA
1.78729

Given the exponentiated beta coefficients of the unadjusted proportional odds model, it follows
that the odds of not achieving complete remission (or displaying a progressive, non-changing,
or partial remission response) is roughly 1.8 times higher for those receiving the alternating
treatment than it is for those receiving the sequential treatment.

ADJUSTED Effect of Treatment:

Exponentiated Treatment Coefficient:

treatmentA
1.76809

Given the exponentiated beta coefficients of the adjusted proportional odds model, the
inferences made about the unadjusted effect of treatment remain the same. That is, the effect
of treatment on response remains the same irrespective of one's sex. Thus, it follows that sex
neither plays a predictive role on the outcome, nor display any influence on a patient's response
treatment. For this reason, our cojecture about the joint independence of sex on treatment and
response (part a) is sound. Moreover, in demonstrating that the effect of treatment on response
remains the same after adjusting for sex, we prove that sex is not a confounder.

Best Model: Adjusted Proportional Odds

Based on the model selection procedure and model comparisons (using LR tests and AIC
scores), it is evident that the model which best fits the data is that of the following form:

For response groups "progressive" $(1)$, "no change" $(2)$, "partial remission" $(3)$, and
"complete remission" $(4)$, let $X_T$ be the treatment random variable of two groups with
"sequential" as the reference group $(0)$; and let $\beta_{0j}$ be the varying intercepts for
each model $j ={1, 2, 3}$:

$$ Y = logit(P({Y \leq j})) = log(\frac{P(Y \leq )){P(Y > j)}) = X\beta_j $$$$ = \beta_{0j} +
0.5699X_T $$
(Intercept)l: -1.2167

(Intercept)2: 0.3382
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(Intercept)3: 1.3803

We may now use these coefficients to obtain the corresponding log-odds for each treatment:

Log-Odds:
Response Sequential Alternating
Y <=1 -1.2167 -0.6468
Y<=2 0.3382 0.9081
Y<=3 1.380 1.9499
Odds:

Response Sequential Alternating

Y <=1 0.29621 0.52372
Y<=2 1.40242 2.47961
Y<=3 3.97609 7.03009

Given the tables above, we see that the exponentiated intercepts in the model represent the
odds of displaying a response that is progressive, up to non-changing, and up to partial
remission under the sequential treatment, while the exponentiated sum of intercepts and slope
represent the same odds under the alternating treatment. Evidently, the odds are increased for
each cumulative response level when the alternating treatment is implemented as opposed to
the sequential treatment. This indicates that the latter is more effective, as it reduces the overall
odds of not achieving complete remission (or remaining in a category below this one). More
specifically, we may interpret the exponentiated slope (treatment coefficient of 0.5699) of
approximately 1.8 as the extent to which the sequential treatment reduces these odds for each
cumulative response category. That is, as can be observed above, the odds of each cumulative
response category under the alternating treatment is approximately 1.8 times higher than those
for the sequential treatment. In other words, the odds for each cumulative response category
are roughly proportional with respect to treatment.

Final Conclusion:

In the "fitted vs. observed" plot below we see that the chosen model provides an adequate fit
for the data. This is further confirmed by individual Wald tests (seen using the summary
function), which yield statistically significant p-values for each coefficient in the model. Lastly,
the LR test of the null and chosen models, proves that our chosen model fits the data
significantly better than the null. Thus, given the now verified implications of this model on the
data mentioned previously, our conclusions remain the same about the relative efficacy of the
two treatments. That is, the evidence gathered from the model is sound enough to validate the
claim that the sequential treatment is preferable to the alternating treatment in reducing the
odds of remaining in any of the aforementioned categories (and hence increasing the odds of
reaching complete remission). The calculated marginal probabilities below provide further
support for this claim.
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Probability:

Response Sequential Alternating

Y=1 0.22852 0.34371
Y=2 0.35524 0.36890
Y=3 0.21529 0.16286
Y=4 0.20096 0.12453

#specifying reference groups and ordering response

#treatment
tumor$treatment <- factor(tumor$treatment, levels=c("S", "A")) %>% #changing ora
relevel (tumor$treatment, ref="S") #reference group = sequential

#sex
tumor$sex <- factor(tumor$sex, levels=c("F", "M")) %>% #changing ordered factor
relevel (tumor$sex, ref="M") #reference group = male

#response
tumor$response <- ordered(tumor$response, levels=c("P","NC","PR","CR"))
levels (tumor$response) #reference group = progressive (always in the numerator)

IPl . INCI . IPRI . ICRI

#PROPORTIONAL ODDS

#model with intercept 1 -> Y=log(P(P)/P(NC+PR+CR))
#model with intercept 2 -> Y=log(P(P+NC)/P(PR+CR))
#model with intercept 3 -> Y=log(P(P+NC+PR)/P(CR))
#different intercepts, same beta coeficcients

#-> UNADJUSTED

#null model

po2 glm0 <- vglm(response ~ 1, family=cumulative(parallel=TRUE), data=tumor, wei
#additive model

po2 glml <- vglm(response ~ treatment + sex, family=cumulative(parallel=TRUE), d
#model with interraction term -> saturated model

po2 glm2 <- vglm(response ~ treatment + sex + treatment*sex, family=cumulative(p

#po2 glm0
#po2 glml
#po2 glm2

#Model Selection:

#not many options (3 models to choose from)

#interaction term is NOT statistically significant, we choose the additive model
#po2 glml (~789) close in residual deviance to po2 glm2 (~788)

#lrtest(po2 glm0, po2 glml) #po2 glml is a better fit than po2 glm0
#lrtest(po2 glml, po2 glm2) #po2 glml is a better fit than po2 glm2

#-> ADJUSTED FOR SEX
#po2 glmA has residual deviance of ~792
po2_glmA <- vglm(response ~ treatment, family=cumulative(parallel=TRUE), data=tu
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lrtest(po2_glmA, po2 glml) #po2 glmA is a better fit than po2 glml

Likelihood ratio test

Model 1: response ~ treatment

Model 2: response ~ treatment + sex
#Df LogLik Df Chisqg Pr(>Chisq)

1 44 -396.33

2 43 -394.53 -1 3.5965 0.0579 .

Signif. codes: 0 ‘***’ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 * " 1

#CUMULATIVE LOGIT

#model 1 -> Y=log(P(P)/P(NC+PR+CR))

#model 2 -> Y=log(P(P+NC)/P(PR+CR))

#model 3 -> Y=log(P(P+NC+PR)/P(CR))
#different intercepts and beta coeficcients

#-> UNADJUSTED

#null model

cl2 glm0 <- vglm(response ~ 1, family=cumulative, data=tumor, weights=frequency)
#additive model

cl2 glml <- vglm(response ~ treatment + sex, family=cumulative, data=tumor, weig
#model with interraction term -> saturated model

cl2 glm2 <- vglm(response ~ treatment + sex + treatment*sex, family=cumulative,

#c12 _glmO0
#cl2 glml
#cl2 glm2

#Model Selection:

#not many options (3 models to choose from)

#interaction term is NOT statistically significant, we choose the additive model
#cl2 glml (~786) somewhat close in residual deviance to cl2 glm2 (~783)

#lrtest(cl2 glm0, cl2 glml) #cl2 glml is a better fit than cl2 glm0
#lrtest(cl2 glml, cl2 glm2) #cl2 glml is a better fit than cl2 glm2

#-> ADJUSTED FOR SEX
#cl2 glmA has residual deviance of ~791
cl2 glmA <- vglm(response ~ treatment, family=cumulative, data=tumor, weights=fr

lrtest(cl2 _glmA, cl2 glml) #cl2 glmA is a better fit than cl2 glml

Likelihood ratio test

Model 1: response ~ treatment

Model 2: response ~ treatment + sex
#Df LogLik Df Chisqg Pr(>Chisq)

1 42 -395.64

2 39 -392.93 -3 5.4156 0.1438

#PROPORTIONAL ODDS or CUMULATIVE LOGIT? (po2 glmA or cl2 glmA)
#does the proportional odds assumption hold?

#similar log-likelihood values
#comparing log-likelihood values instead of LRT:
#both models have the same number of predictors
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#they are non-nested
logLik(po2_glmA)
logLik(cl2_glmA)

#similar residual deviances
deviance(po2_glmA)
deviance(cl2_glmA)

#both fit the data equally well, yet po2 glmA is more parsimoneous
#therefore, the proportional odds assumption holds and provides the best model

-396.326569512947
-395.641299752361
792.653139025894
791.282599504723

#UNADJUSTED effect of treatment - Proportional 0Odds
exp(0.5807) #exponentiated treatment coefficient

#ADJUSTED effect of treatment - Proportional 0Odds
exp(0.5699) #exponentiated treatment coefficient

1.78728909533313
1.76809023356963

#BEST MODEL
#additive proportional odds model (adjusted for sex)
summary (po2_glmA)

Call:
vglm(formula = response ~ treatment, family = cumulative(parallel = TRUE),
data = tumor, weights = frequency)
Coefficients:
Estimate Std. Error z value Pr(>|z]|)
(Intercept):1 -1.2167 0.1717 -7.086 1.38e-12 ***
(Intercept):2 0.3382 0.1564 2.163 0.03054 =
(Intercept):3 1.3803 0.1814 7.611 2.73e-14 **x*
treatmentA 0.5699 0.2116 2.694 0.00706 *=*
Signif. codes: 0 ‘***’ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 * " 1

Names of linear predictors: logitlink(P[Y<=1]), logitlink(P[¥Y<=2]),
logitlink(P[Y<=3])

Residual deviance: 792.6531 on 44 degrees of freedom
Log-likelihood: -396.3266 on 44 degrees of freedom
Number of Fisher scoring iterations: 3

No Hauck-Donner effect found in any of the estimates
Exponentiated coefficients:

treatmentA
1.768108
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#INTERPRETING COEFFICIENT

#getting marginal probabilities (for alternating treatment)
logit pYll = -1.2167 + 0.5699
logit pYl2 = 0.3382 + 0.5699
logit pY13 = 1.3803 + 0.5699

pYll = exp(logit pY1ll)/(1l + exp(logit pYll))

pY1l2 = exp(logit pY1l2)/(1l + exp(logit pY1l2))
pY1l3 = exp(logit pY¥Y1l3)/(1l + exp(logit pY1l3))
pYl = pYll - 0

pY2 = pYl2 - pYll

pY3 = pY1l3 - pY1l2

#pY11

#pY12

#pY13

#sum(pY¥1l, pY2, pY3)
pY4 = 1 - sum(pYl, pY2, pY¥3)

#marginal probabilities

pYl #progressive given alternating treatment

pPY2 #no change given alternating treatment

pY3 #partial remission given alternating treatment
pY4 #complete remission given alternating treatment

0.343711011890575
0.368900194799811
0.162857241448533
0.124531551861081

#getting marginal probabilities (for sequential treatment)
logit2 pY¥ll = -1.2167

logit2 py¥l2 = 0.3382

logit2 pY¥l13 = 1.3803

p2Y1ll = exp(logit2 pYll)/(1l + exp(logit2 pYll))
p2Y12 = exp(logit2 pY12)/(1 + exp(logit2 pY1l2))
p2Y13 = exp(logit2 pY13)/(1l + exp(logit2 pY13))

p2Y1l = p2yll - 0

p2Y2 = p2Yl2 - p2Yll
p2Y3 = p2Yl3 - p2yl2
#p2Y11
#p2Y12
#p2Y13

#sum(pYl, pY2, pY3)
p2Y¥4 = 1 - sum(p2Y1l, p2Y2, p2Y3)

#marginal probabilities
p2Y1 #progressive given sequential treatment
p2Y2 #no change given sequential treatment
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p2Y3 #partial remission given sequential treatment
p2Y4 #complete remission given sequential treatment

0.228517710609371
0.355235504652692
0.215285961980231
0.200960822757706

#DOUBLE CHECKING PROBABILITIES ARE CORRECT

#cumulative probabilities for each treatment (model 1: y<= progressive)
cpl tA = pYll/(1l-pY1ll)
cpl_tS p2Y11/(1-p2Y1l1)

#cumulative probabilities for each treatment (model 2: y<= progressive, no chang
cp2_tA = pY1l2/(1l-pY1l2)
cp2_tS = p2Y12/(1-p2Y12)

#cumulative probabilities for each treatment (model 3: y<= progressive, no chang
cp3_tA = pY1l3/(1l-pY1l3)
cp3_tS = p2Y13/(1-p2Y13)

#log of odds (cumulative probabilities for each treatment)
#should give the same proportional odds beta coefficient (slope) for treatment

#log odds - model 1
log(cpl tA/cpl tS) #log((pYll/(1-pY11l))/(p2Y11/(1-p2Y11)))

#log odds - model 2
log(cp2_tA/cp2_tS)

#log odds - model 2
log(cp3_tA/cp3_tS)

#thus, the probabilities above are correct
#assuming proportional odds holds and the model fits the data well

#this means that, under this model, the odds of not achieving complete remission
cp3_tA/cp3_tS #=exp(log(cp3 tA/cp3 tS))

0.5699
0.5699
0.5699
1.76809023356963

#sequential odds
#exp(logit2 pYll)
#exp(logit2 pY12)
#exp(logit2 pY13)

#adjusted odds

#exp(logit pY1ll)
#exp(logit pY12)
#exp(logit pY13)
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#ASSESSING "BEST" MODEL FIT
#fitted vs. observed
tumor_ fit <- as.data.frame(fitted(po2 glmA))

tumor %>%
select(-c("sex"))
group_by(treatment

tumorl <-

PHP2514_Basso_HW3_2021

summarize (response = response, frequency = frequency, total = sum(fr
ungroup() %>%
group_by(treatment, response) %>%
mutate(sum_freq = sum(frequency)) %>%
summarize(response = response, sum freq = sum freq, total = total, p
distinct()
tumorl$fitted <- c(0.2285115, 0.3552443, 0.2152821, 0.2009621, 0.3437053, 0.3689
ggplot (tumorl, aes(x = treatment, y = prop)) +
geom_line(aes(group = response, color = response)) +
geom_point(aes(color = response), size = 4) +
geom point(aes(y = fitted, color = response), size = 4, shape = 18) +
scale color manual(values=c("blue", "red", "green", "orange"))
#LRT: null vs. chosen model
lrtest(po2 glmA, po2 glm0) #chosen is better
#summary (po2 glmA) #significant coefficients
“summarise()” has grouped output by 'treatment'. You can override using the " .gr

oups”~ argument.

“summarise()  has grouped output by 'treatment',
ing the ~.groups” argument.

Likelihood ratio test

Model 1: response ~ treatment
Model 2: response ~ 1
#Df LogLik Df Chisqg Pr(>Chisq)
1 44 -396.33
2 45 -399.98 1 7.3148 0.006839 **
Signif. codes: 0 ‘***x’ 0.001 ‘**’ 0.01 ‘*’ 0.05
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